Transformer-Based Network for Accurate Classification of Lung Auscultation Sounds

Author:

Sonali C. S.,Kiran John,Chinmayi B. S.,Suma K. V.,Easa Muhammad

Abstract

Respiratory diseases are a major cause of death worldwide, affecting a significant proportion of the population with lung function abnormalities that can lead to respiratory illnesses. Early detection and prevention are critical to effective management of these disorders. Deep learning algorithms offer a promising approach for analyzing complex medical data and aiding in early disease detection. While transformer-based models for sequence classification have proven effective for tasks like sentiment analysis, topic classification, etc., their potential for respiratory disease classification remains largely unexplored. This paper proposes a classifier utilizing the transformer-encoder block, which can capture complex patterns and dependencies in medical data. The proposed model is trained and evaluated on a large dataset from the International Conference on Biomedical Health Informatics 2017, achieving state-of-the-art results with a mean sensitivity of 70.53%, mean specificity of 84.10%, mean average score of 77.32%, and mean harmonic score of 76.10%. These results demonstrate the model's effectiveness in diagnosing respiratory diseases while taking up minimal computational resources.

Publisher

Begell House

Subject

Biomedical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3