MODELING LAMINAR FLOW IN CONVERGING-DIVERGING CHANNELS

Author:

Fasogbon Samson Kolawole,Ayoade Adams Babatunde,Oyedepo Sunday Olayinka

Abstract

Converging-diverging channels have been known to have low net charge (flow parameters) due to associated high frictional flow resistance. Thus, there is a need to optimize frictional flow resistance in these channels. To this end, frictional flow resistance was optimized for a laminar, fully formed flow in a linearly varying cross-sectional converging-diverging channel in this study. To achieve this, an empirical frictional flow resistance model was developed using continuity and momentum equations, and this accurately represents a parabolic axial velocity profile in converging-diverging section. The developed model was solved and parametric investigations carried out on geometrical and fluid flow parameters using MATLAB 6.1. The results show that the frictional flow resistance decreases as radius ratios increases, but increases as Reynolds number and taper angle increase. Radius ratios and Reynolds numbers were found to be more significant than taper angles. Results in comparison to available literature showed that the developed frictional flow model is an accurate model as it predicts axial velocity and the flow resistance with a high degree of precision. The study concludes that, for frictional flow resistance to be kept at barest minimum in a converging diverging channel, radius ratio must be maintained at its highest value and Reynolds number at its lowest possible value.

Publisher

Begell House

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3