HALL CURRENT AND LUBRICATION EFFECTS ON MULTIPHASE FLOWS OF NON-NEWTONIAN THROUGH AN INCLINED CHANNEL WITH FLEXIBLE WALLS

Author:

Nazeer Mubbashar,Anila Sadaf,Bibi Hassan,Ali Zulfiqar,Nazir M. Waqas

Abstract

The effects of heat transfer rate on the motion of round shape solid particles through a non-Newtonian fluid due to peristaltic waves have been investigated in this theoretical study. The governing equations for the current flow problems are modeled for fluid and particle phases by using the continuity, momentum, and energy equations with the help of long wavelength approximation and creeping flow regime. The momentum equations are updated with the addition of Hall current and porous medium terms to capture the effects of Hall current and porous medium parameters, while the energy equation is extended for the thermal radiation effects on the current flow phenomena. The coupled differential equations are solved analytically. The physical quantities are displayed for a wider range of physical parameters; trapping phenomena are also discussed through streamlines contours. The results revealed that the magnitude of trapped bolus reduces dramatically for larger inclinations. The Darcy number diminishes the temperature distribution inside the system. The Hall current parameter enhanced the velocity distribution while the Hartmann number diminished the velocity profile.

Publisher

Begell House

Subject

Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3