A SCALABLE TRANSFORMER MODEL FOR REAL-TIME DECISION MAKING IN NEUTRON SCATTERING EXPERIMENTS

Author:

Yin Junqi,Liu Siyan,Reshniak Viktor,Wang Xiaoping,Zhang Guannan

Abstract

The U.S. Department of Energy's (DOE's) neutron research facilities at Oak Ridge National Laboratory (ORNL), including the High Flux Isotope Reactor (HFIR) and the Spallation Neutron Source (SNS), are a state-of-the-art neutron scattering facility that allows researchers to study the structure and dynamics of materials at the atomic scale. At the SNS, neutrons are measured using the time-of-flight (TOF) technique as they move through a neutron beamline to interact with a sample. Large volumes of neutron scattering data are collected and recorded in neutron event mode. Optimal productivity of the TOF instrument is limited due to the lack of real-time data analysis tools. The large amount of data generated by the experiments can be challenging to process and analyze in real time, particularly for experiments that require rapid feedback and adjustment of experimental parameters. The regular computer/workstation cannot keep up with the experiment speed to provide real-time feedback to adjust experimental parameters, so connecting the supercomputers available to the neutron facility is necessary to achieve real-time data analysis and experiment steering. To address this challenge, we exploit the Frontier supercomputer at Oak Ridge Leadership Computing Facility (OLCF) to train a scalable temporal fusion transformer model for real-time decision making of TOF neutron scattering experimentation. In this paper, we present the results using Frontier to provide the processing power needed to rapidly process and analyze large volumes of single-crystal diffraction data collected at TOPAZ, a neutron time-of-flight Laue single-crystal diffractometer at the SNS.

Publisher

Begell House

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3