PHYSICS-INFORMED NEURAL NETWORKS FOR INFORMED VACCINE DISTRIBUTION INMETA-POPULATIONS

Author:

Arulandu Alvan Caleb,Seshaiyer Padmanabhan

Abstract

Accurate numerical and physical models play an important role in modeling the spread of infectious disease as well as informing policy decisions. Vaccination programs rely on the estimation of disease parameters from limited, error-prone reported data. Using physics-informed neural networks (PINNs) as universal function approximators of the susceptible-infected-recovered (SIR) compartmentalized differential equation model, we create a data-driven framework that uses reported data to estimate disease spread and approximate corresponding disease parameters. We apply this to data from a London boarding school, demonstrating the framework's ability to produce accurate disease and parameter estimations despite noisy data. However, real-world populations contain sub-populations, each exhibiting different levels of risk and activity. Thus, we expand our framework to model meta-populations of preferentially-mixed subgroups with various contact rates, introducing a new substitution to decrease the number of parameters. Optimal parameters are estimated through PINNs which are then used in a negative gradient approach to calculate an optimal vaccine distribution plan for informed policy decisions. We also manipulate a new hyperparameter in the loss function of the PINNs network to expedite training. Together, our work creates a data-driven tool for future infectious disease vaccination efforts in heterogeneously mixed populations.

Publisher

Begell House

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3