HIGH-DIMENSIONAL STOCHASTIC DESIGN OPTIMIZATION UNDER DEPENDENT RANDOM VARIABLES BY A DIMENSIONALLY DECOMPOSED GENERALIZED POLYNOMIAL CHAOS EXPANSION

Author:

Lee Dongjin,Rahman Sharif

Abstract

Newly restructured generalized polynomial chaos expansion (GPCE) methods for high-dimensional design optimization in the presence of input random variables with arbitrary, dependent probability distributions are reported. The methods feature a dimensionally decomposed GPCE (DD-GPCE) for statistical moment and reliability analyses associated with a high-dimensional stochastic response; a novel synthesis between the DD-GPCE approximation and score functions for estimating the first-order design sensitivities of the statistical moments and failure probability; and a standard gradient-based optimization algorithm, constructing the single-step DD-GPCE and multipoint single-step DD-GPCE (MPSS-DD-GPCE) methods. In these new design methods, the multivariate orthonormal basis functions are assembled consistent with the chosen degree of interaction between input variables and the polynomial order, thus facilitating to deflate the curse of dimensionality to the extent possible. In addition, when coupled with score functions, the DD-GPCE approximation leads to analytical formulae for calculating the design sensitivities. More importantly, the statistical moments, failure probability, and their design sensitivities are determined concurrently from a single stochastic analysis or simulation. Numerical results affirm that the proposed methods yield accurate and computationally efficient optimal solutions of mathematical problems and design solutions for simple mechanical systems. Finally, the success in conducting stochastic shape optimization of a bogie side frame with 41 random variables demonstrates the power of the MPSS-DD-GPCE method in solving industrial-scale engineering design problems.

Publisher

Begell House

Subject

Control and Optimization,Discrete Mathematics and Combinatorics,Modeling and Simulation,Statistics and Probability

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3