CONVOLUTIONAL NEURAL NETWORKS FOR PROBLEMS IN TRANSPORT PHENOMENA: A THEORETICAL MINIMUM

Author:

Bhasin Arjun,Mistry Aashutosh

Abstract

Convolutional neural network (CNN), a deep learning algorithm, has gained popularity in technological applications that rely on interpreting images (typically, an image is a 2D field of pixels). Transport phenomena is the science of studying different fields representing mass, momentum, or heat transfer. Some of the common fields are species concentration, fluid velocity, pressure, and temperature. Each of these fields can be expressed as an image(s). Consequently, CNNs can be leveraged to solve specific scientific problems in transport phenomena. Herein, we show that such problems can be grouped into three basic categories: (a) mapping a field to a descriptor (b) mapping a field to another field, and (c) mapping a descriptor to a field. After reviewing the representative transport phenomena literature for each of these categories, we illustrate the necessary steps for constructing appropriate CNN solutions using sessile liquid drops as an exemplar problem. If sufficient training data is available, CNNs can considerably speed up the solution of the corresponding problems. The present discussion is meant to be minimalistic such that readers can easily identify the transport phenomena problems where CNNs can be useful as well as construct and/or assess such solutions.

Publisher

Begell House

Subject

Computer Science Applications,Mechanical Engineering,Condensed Matter Physics

Reference122 articles.

1. Abadi, A., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V, Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X., Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, arXiv:1603.04467, 2016a. DOI: 10.48550/arXiv.1603.04467

2. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., and Isard, M., {TensorFlow}: A System for {Large-Scale} Machine Learning, 12th USENIXSymposium on Operating Systems Design and Implementation (OSDI16), Savannah, GA, pp. 265-283, 2016b.

3. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M., Gertych, A., and Tan, R.S., A Deep Convolutional Neural Network Model to Classify Heartbeats, Comput. Biol. Med, vol. 89, pp. 389-96, 2017. DOI: 10.1016/j.compbiomed.2017.08.022

4. Ahmad, Z., Xie, T., Maheshwari, C., Grossman, J.C., and Viswanathan, V., Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes, ACS Cent. Sci., vol. 4, no. 8, pp. 996-1006, 2018. DOI: 10.1021/acscentsci.8b00229

5. Alexander, F., Almgren, A., Bell, J., Bhattacharjee, A., Chen, J., Colella, P., Daniel, D., DeSlippe, J., Diachin, L., Draeger, E., Dubey, A., Dunning, T., Evans, T., Foster, I., Francois, M., Germann, T., Gordon, M., Habib, S., Halappanavar, M., Hamilton, S., Hart, W., Huang, Z., Hungerford, A., Kasen, S., Kent, P., Kolev, T., Kothe, D.B., Kronfeld, A., Luo, Y., Mackenzie, P., McCallen, D., Messer, B., Mniszewski, S., Oehmen, C., Perazzo, A., Perez, D., Richards, D., Rider, W.J., Rieben, R., Roche, K., Siegel, A., Sprague, M., Steefel, C., Stevens, R., Syamlal, M., Taylor, M., Turner, J., Vay, J.-L., Voter, A.F., Windus, T.L., and Yelick, K., Exascale Applications: Skin in the Game, Philos. Trans. Roy. Soc. A, vol. 378, no. 2166, p. 20190056, 2020. DOI: 10.1098/rsta.2019.0056

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Grad-CAM: Understanding AI Models;Computers, Materials & Continua;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3