MACHINE LEARNING BASED MODELING AND IDENTIFICATION OF KEY INFLUENCING PARAMETERS FOR NUCLEATE POOL BOILING ON PLAIN AND ROUGHENED SURFACES
Author:
K Vijay,Gedupudi Sateesh
Reference65 articles.
1. Ahmad, S.W., Lewis, J. S., McGlen, R. J., and Karayiannis, T. G., (2014) 'Pool boiling on modified surfaces using r-123,' Heat transfer engineering, 35(16-17), pp. 1491-1503. 2. Ahn, H. S., Lee, C., Kim, H., Jo, H., Kang, S., Kim, J., Shin, J., and Kim, M. H., (2010) 'Pool boiling chf enhancement by micro/nanoscale modification of zircaloy-4 surface,' Nuclear Engineering and Design, 240(10), pp. 3350-3360. 3. Akhshik, M., Bilton, A., Tjong, J., Singh, C. V., Faruk, O., and Sain, M., (2022) 'Prediction of greenhouse gas emissions reductions via machine learning algorithms: Toward an artificial intelligence-based life cycle assessment for automotive lightweighting,' Sustainable Materials and Technologies, 31, pp. e00370. 4. Amudhalapalli, G. K. and Devanuri, J. K., (2023) 'Prediction of transient melt fraction in metal foam-nanoparticle enhanced pcm hybrid shell and tube heat exchanger: A machine learning approach,' Thermal Science and Engineering Progress, 46, pp. 102241. 5. Bang, H.-T., Yoon, S., and Jeon, H., (2020) 'Application of machine learning methods to predict a thermal conductivity model for compacted bentonite,' Annals of Nuclear Energy, 142, pp. 107395.
|
|