MODIFICATION OF TI-6AL-4V TITANIUM ALLOY SURFACE RELIEF BY COMPRESSION PLASMA FLOWS IMPACT

Author:

Cherenda Nikolai N.,Leivi Artem,Petukh Alexandra B.,Uglov Vladimir V.,Grigoriev Sergey,Vereschaka Alexey,Astashynski Valiantsin M.,Kuzmitski Anton M.

Abstract

Investigation of compression plasma flows impact on surface relief of Ti-6Al-4V titanium alloy was carried out in this work. Profilometry, x-ray diffraction, scanning electron microscopy, and sample weight measurements were used as investigation techniques. The findings showed that plasma impact led to the formation of developed surface relief (R<sub>a</sub> parameter was changed in the range of 0.7-2.7 &mu;m) due to the action of hydrodynamic instabilities at the melt-plasma border. Increase in the number of pulses resulted in the growth of R<sub>a</sub> value. Numerical simulation of surface evolution under plasma impact was carried out on the basis of the model of incompressible fluid potential flow. Simulation data correlated with experimental data set. The hydrodynamic flow of the melt during plasma impact led to another process: surface erosion. Increase in both the absorbed energy density and the number of pulses resulted in erosion intensity increase. Formation of titanium nitride on the surface was observed as a result of the interaction of nitrogen (as a plasma generating gas) with the surface heated under plasma impact. Titanium nitride film prevented the development of the surface relief formed by the action of hydrodynamic instabilities.

Publisher

Begell House

Subject

Physical and Theoretical Chemistry,Spectroscopy,General Engineering,Energy Engineering and Power Technology,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3