Hsa_circ_0007334 Promotes the Osteogenic Differentiation and Proliferation of Human Bone Marrow Mesenchymal Stem Cells by Sponging miR-144-3p

Author:

Liu Meng-Jun,Du Bin,Yu Jin-Song,Zhao Ji,Chen Hao,Xiang Xing-Sheng,Wang Yu-Zhu,Chen Wei

Abstract

This study aimed to identify the possible function and the molecular mechanism of hsa_circ_0007334 in human bone marrow mesenchymal stem cells (hBMSCs) osteogenic differentiation. The level of hsa_circ_0007334 was detected by means of quantitative real-time polymerase chain reaction (RT-qPCR). Alkaline phosphatase (ALP), RUNX2, osterix (OSX), and osteocalcin (OCN) were monitored to analyze the degree of osteogenic differentiation under routine culture or under the control of hsa_circ_0007334. The proliferation of hBMSCs was tested with a cell counting kit-8 (CCK-8) assay. The migration of hBMSCs was tested using the Transwell assay. Bioinformatics analysis was used to predict the possible targets of hsa_circ_0007334 or miR-144-3p. Dual-luciferase reporter assay system was used to analyze the combination between hsa_circ_0007334 and miR-144-3p. Hsa_circ_0007334 was upregulated in osteogenic differentiation of hBMSCs. Osteogenic differentiation increased by hsa_circ_0007334 <i>in vitro </i>was confirmed with levels of ALP and bone markers (RUNX2, OCN, OSX). hsa_circ_0007334 overexpression promoted osteogenic differentiation, proliferation, and migration of hBMSCs, and knockdown of hsa_circ_0007334 has the opposite effects. miR-144-3p was identified as the target of hsa_circ_0007334. The targeting genes of miR-144-3p are involved in osteogenic-differentia-tion-related biological processes (such as bone development, epithelial cell proliferation, and mesenchymal cell apoptotic prosess) and pathways (including FoxO and VEGF signaling pathway). Hsa_circ_0007334, therefore, presents itself as a promising biological for osteogenic differentiation.

Publisher

Begell House

Subject

Genetics,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3