ADVECTION AND DEPOSITION OF MICRODROPLETS IN STAGNATION POINT FLOW

Author:

Javed Md Shamser Ali,Ajaev Vladimir S.

Abstract

We investigate trajectories of microscale evaporating droplets in a stagnation point flow near a wall of a respiratory airway. The configuration is motivated by the problem of advection and deposition of microscale droplets of respiratory fluids in human airways during transmission of infectious diseases, such as tuberculosis and COVID-19. Laminar boundary layer equations are solved to describe the airflow while the equations of motion of the droplet include contributions from gravity, aerodynamic drag, and Saffman force. Evaporation is accounted for at both the droplet surface and the wall of the respiratory airway and is shown to delay droplet deposition as compared to the predictions of isothermal models. Evaporation at the airway wall has a stronger effect on droplet trajectories than evaporation at the droplet surface, leading to droplets being advected away by the flow and thus avoiding deposition in the stagnation point flow region.

Publisher

Begell House

Subject

Fluid Flow and Transfer Processes,Surfaces and Interfaces,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3