Glaucoma is a progressive visual polyneuropathy characterized by retinal ganglion cell atrophy and optic nerve head changes. It's generally triggered due to increased intraocular pressure compared with the healthy eye. Glaucoma is treated with various medications in traditional eye drops, such as prostaglandins, carbonic anhydrase inhibitors, beta-blockers, and others. Such treatments are difficult to use and produce lachrymal leakage and inadequate corneal permeability, resulting in lower availability. Ophthalmic <i>in situ </i>gels, introduced in past decades with tremendous effort, are among the finest various choices to solve the drawbacks of eye drops. Employing different polymers with pH-triggered, temperature-triggered, and ion-activated processes have been used to generate ophthalmic <i>in situ</i> gelling treatments. Once those preparations are delivered into the eye, they change phase from sol to gel, allowing the medicine to stay in the eye for longer. These formulations are known as smart gels as they turn into gelling fluids when administered into the eyes. The different mechanisms of <i>in situ</i> gel formulations are used for the management of glaucoma and are discussed in this review article.