INVESTIGATION ON FLEXURAL AND IMPACT STRENGTH OF HOLLOW GLASS FABRIC AND E-GLASS FIBER-REINFORCED SELF-HEALING POLYMER COMPOSITES

Author:

Kshirsagar Prashant R.,Jarali Chetan S.,Raja S.

Abstract

The present study investigates the self-healing functionality of e-glass unidirectional fiber-reinforced epoxy resin, based on a hollow glass fiber approach under flexural and impact loading. The planned self-healing fiber-reinforced composite constitutes epoxy resin (Lapox ARL-125 &#43; AH-367), e-glass fibers with 0&deg; orientation, embedded hollow glass fabric (HGF) filled with a curing agent (Lapox L-552/K-552), which provides a self-healing functionality. The developed composite is tested on the virgin, damaged, and healed conditions for the various healing periods (1, 2, and 3 days), and recovered flexural, impact strength and subsequent healing efficiency are studied. On day three, the optimum flexural strength achieved is 851.17 N/mm<sup>2</sup>, with a healing efficiency of 74.53&#37; when subjected to quasi-static load. Similarly, the optimum impact energy absorbed is 4439.26 J/m, and impact strength achieved is 445.88 kJ/m<sup>2</sup>, with a healing efficiency of 55.58&#37; when subjected to impact load. The results show that developed self-healing composites may provide excellent flexural and impact properties for marine structural applications.

Publisher

Begell House

Subject

Mechanics of Materials,Ceramics and Composites

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3