PROPAGATION OF VECTOR VORTEX BEAMS EXCITED BY A TERAHERTZ LASER DIELECTRIC RESONATOR
-
Published:2024
Issue:8
Volume:83
Page:57-67
-
ISSN:0040-2508
-
Container-title:Telecommunications and Radio Engineering
-
language:en
-
Short-container-title:Telecom Rad Eng
Author:
Degtyarev Andrey,Dubinin Mykol M.,Maslov Vyacheslav,Muntean Konstantin I.,Svistunov Oleg
Abstract
In this paper, analytical expressions for the nonparaxial mode diffraction of a terahertz laser dielectric
waveguide resonator are derived. It is assumed that the modes interact with a spiral phase plate. The cases
of different topological charges (n) are considered. Also, using numerical simulations, the physical features
of emerging vortex beams are studied when they propagate in free space. The Rayleigh-Sommerfeld vector theory is used to study propagation of the vortex laser beams in different diffraction zones excited by the modes of a dielectric waveguide quasi-optical resonator upon incidence on a spiral phase plate. It is shown that the interaction of a spiral phase plate with a linearly polarized EH<sub>11</sub> mode forms a ring (n = 1, 2) due to field structure with an intensity maximum at the center (n = 0). For the azimuthally polarized TE<sub>01</sub> mode, the ring (n = 0) field structure transforms into a field distribution with an intensity maximum at the center (n = 1) and then back to a ring (n = 2). In this case, the phase front of the EH<sub>11</sub> mode beam turns from a spherical shape to a spiral one with one singularity point on the axis, while a region with two singularity points appears off the axis for the phase structure of the TE<sub>01</sub> mode beam.
Reference30 articles.
1. Al Dhaybi, A., Degert, J., Brasselet, E., Abraham, E., and Freysz, E., Terahertz Vortex Beam Generation by Infrared Vector Beam Rectification, J. Opt. Soc. Am. B, vol. 36, no. 1, pp. 12-18, 2019. DOI: 10.1364/JOSAB.36.000012 2. Beijersbergen, M.W., Coerwinkel, R.P.C., Kristensen, M., and Woerdman, J.P., Helical-Wavefront Laser Beams Produced with a Helical Phase Plate, Opt. Commun., vol. 112, nos. 5-6, pp. 321-327, 1994. DOI: 10.1016/0030-4018(94)90638-6 3. Chen, S.C., Feng, Z., Li, J., Tan, W., Du, L.H., Cai, J., Ma, Y., He, K., Ding, H., Zhai, Z.H., and Li, Z.R., Ghost Spintronic THz-Emitter-Array Microscope, Light Sci. Appl., vol. 9, no. 1, p. 99, 2020. DOI: 10.1038/s41377-020-0338-4 4. Chevalier, P., Amirzhan, A., Wang, F., Piccardo, M., Johnson, S.G., Capasso, F., and Everitt, H.O., Widely Tunable Compact Terahertz Gas Laser, Science, vol. 366, no. 6467, pp. 856-860, 2019. DOI: 10.1126/science.aay8683 5. Farhoomand, J. and Pickett, H.M., Stable 1.25 Watts CW Far Infrared Laser Radiation at the 119 μm Methanol Line, Int. J. Infrared Millim. Waves, vol. 8, no. 5, pp. 441-447, 1987. DOI: 10.1007/BF01013257
|
|