THE EFFECTS OF SHAPE AND LIQUID PROPERTIES ON PRESSURE SWIRL ATOMIZER IN-NOZZLE FLOW

Author:

Tonini Simona,Conti P.,Cossali G. Elvio

Abstract

The internal flow in pressure swirl atomizers is numerically predicted by performing large eddy simulations and using a volume of fluid approach. The output of the numerical model is validated by comparing it with three databases of experimental measurements obtained on large-scale pressure swirl atomizers available in the open literature. A simplified analytical model previously developed by the authors, which relates the swirl intensity to the thickness of the fluid exiting the nozzle, is used to analyze the flow behavior in three pressure swirl atomizers, with large differences in the injector geometry, the operating conditions, and the fluid thermophysical properties. This simple relationship is found to hold for the three pressure swirl atomizers, with small changes of the parameter that accounts for energy losses, while data obtained with relatively small variations of the injector geometry are found to collapse on the same curve. The effects of operating conditions and fluid thermophysical properties on this relation are found to be irrelevant.

Publisher

Begell House

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3