NONLINEAR EFFECTS IN VISCOELASTIC DROP SHAPE OSCILLATIONS

Author:

Zrnic Dino,Brenn Günter

Abstract

A study of axisymmetric shape oscillations of viscoelastic drops in a vacuum is conducted, using the method of weakly nonlinear analysis. The motivation is the relevance of the shape oscillations for transport processes across the drop surface, as well as fundamental interest. The study is performed for, but not limited to, the two-lobed mode of initial drop deformation. The Oldroyd-B model is used for characterizing the liquid rheological behavior. The method applied yields a set of governing equations, as well as boundary and initial conditions, for different orders of approximation. In the present paper, the equations and solutions up to second order are presented, together with the characteristic equation for the viscoelastic drop. The characteristic equation has an infinite number of roots, which determine the time dependency of the oscillations. Solutions of the characteristic equation are validated against experiments on acoustically levitated individual viscoelastic aqueous polymer solution drops. Experimental data consist of decay rate and oscillation frequency of free damped drop shape oscillations. With these data, solutions of the characteristic equation dominating the oscillations are identified. The theoretical analysis reveals nonlinear effects, such as the excess time in the prolate shape and frequency change for varying initial deformation amplitude. The influences of elasticity, measured by the stress relaxation and deformation retardation time scales, are quantified, and the effects are compared to the Newtonian case in the moderate-amplitude regime.

Publisher

Begell House

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3