3D TUMOR SEGMENTATION AND DIAGNOSIS SYSTEM OF LUNG CANCER USING MULTISCALE APPROACHES

Author:

Langat Gilbert,Zou Beiji,Kui Xiaoyan,Njagi Kevin

Abstract

A deadly disease that affects people in various countries in the world is lung cancer (LC). The rate at which people die due to LC is high because it cannot be detected easily at its initial stage of tumor development. The lives of many people who are affected by LC are assured if it is detected in the initial stage. The diagnosis of LC is possible with conventional computer-aided diagnosis (CAD). The process of diagnosis can be improved by providing the associated evaluation outcomes to the radiologists. Since the results from the process of extraction of features and segmentation of lung nodule are crucial in determining the operation of the traditional CAD system, the results from the CAD system highly depend on these processes. The LC classification from computed tomography (CT) images of three dimensions (3D) using a CAD system is the key aspect of this paper. The collection of the 3D-CT images from the standard data source takes place in the first stage. The obtained images are provided as input for the segmentation stage, in which a multi-scale 3D TransUNet (M-3D-TUNet) is adopted to get the precise segmentation of the LC images. A multi-cascaded model that incorporates residual network (ResNet), visual geometry group (VGG)-19, and DenseNet models is utilized to obtain the deep features from the segmented images. The segmented image from the M-3D-TUNet model is given as input to this multi-cascaded network. The features are obtained and fused to form the feature pool. The feature-pool features are provided to the enhanced long short-term memory with attention mechanism (ELSTM-AM) for classification of the LC. The ELSTM-AM classifies the images as normal or healthy segments. The classifier's parameters are optimized with the help of the modified fluctuation-based queuing search algorithm (MF-QSA). The output from implementing the suggested model on 3D-CT images from Lung Nodule Analysis of 2016, with a sample of 888 CT scans with 1186 nodules dataset, achieved; Accuracy 90.9%, Precision 91.1%, Sensitivity 91%, Specificity 90.8%, and F-Score 91%, which shows that the generated framework for LC detection is better than existing models for LC classification.

Publisher

Begell House

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3