TEMPERATURE CORRECTION METHOD OF RADIATION THERMOMETER BASED ON THE NONLINEAR MODEL FITTED FROM SPECTRAL EMISSIVITY MEASUREMENTS OF Ni-BASED ALLOY

Author:

Xu Yanfen,Zhang Kaihua,Yu Kun,Liu Yufang

Abstract

Accurate temperature monitoring of heat transfer tube is crucial for safe and efficient operation of nuclear power plants, and radiation thermometer is a common method used for this purpose. This paper thoroughly introduces the measurement principle of the radiation thermometer with an operation wavelength range of 8-14 μm. The spectral emissivity of Ni-based alloy DD6 under argon condition is measured using an emissivity measurement setup equipped with a Fourier-transform infrared (FTIR) spectrometer. By integrating the spectral emissivity in the working wavelength range, the spectral band emissivity can be calculated to enhance the accuracy of calculation results obtained by radiation thermometer. And curve of the spectral band emissivity with temperature can be accurately described by the nonlinear model. The radiation and corrected temperatures are compared with the temperatures obtained by a K-type thermocouple to verify the availability of the spectral band emissivity obtained by fitting the nonlinear model. The temperature comparison results demonstrate that the corrected temperatures are closer to the true temperature than the radiation temperature, with a maximum temperature deviation of only 4.38°C. The combined relative uncertainty of true temperature measurement by the radiation thermometer at temperatures of 200, 300, 400, and 500°C is less than 3.60%.

Publisher

Begell House

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3