PREDICTION OF PARAMETERS OF BOILER SUPERHEATER BASED ON TRANSFER LEARNING METHOD

Author:

Tong Shuiguang,Yang Qi,Tong Zheming,Wang Haidan,Chen Xin

Abstract

The superheater in the boiler is the key of equipment connecting high-temperature steam to the turbine for power generation. At present, the problems of large variable fluctuations, strong timing coupling, and multi-power plant data utilization prevent the temperature, flow, and pressure prediction of the boiler superheater. In this paper, a method for predicting the parameters of boiler superheater based on a transfer learning model is proposed, which realizes the joint utilization of data from multiple power plants. The method first collects data from a waste incineration boiler power plant for pre-training the long short-term memory (LSTM)-transformer model, and then completes the transfer learning training on the new power plant. The proposed method has the advantages of high prediction accuracy, good robustness, and more reliable location prediction with drastic changes. The predictions on the test set are within ± 5% of the experimental value. Compared with the model not trained by the transfer learning, the proposed method achieves the lowest relative errors for all prediction intervals in the 3-15 min range. Compared to the linear regression (LR), support vector regression (SVR), and random forest (RF), the proposed method improves the average absolute percentage error (MAPE) by 30%, 13%, and 20%, respectively. Flatter loss sharpness value and better robust performance obtained from the transfer learning method is verified by an experimental verification. Finally, a digital system design for power plants with real-time data visualization monitoring, parameter prediction, and fault warning functions are implemented.

Publisher

Begell House

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3