APPLICABILITY OF MACHINE LEARNING TECHNIQUES IN PREDICTING SPECIFIC HEAT CAPACITY OF COMPLEX NANOFLUIDS

Author:

Oh Youngsuk,Guo Zhixiong

Abstract

The complexity of the interaction between base fluids and nano-sized particles makes the prediction of nanofluid thermophysical properties difficult. However, machine learning techniques can be utilized as an alternative approach due to their ability to identify complex nonlinear patterns in data and make accurate forecasts. This paper presents intuitive predictions of specific heat of various types of nanofluids using machine learning models based on experimental data obtained from 47 different studies, comprising 5009 data points. Three machine learning algorithms, namely, artificial neural network (ANN), support vector regression (SVR), and extreme gradient boosting (XGBoost), were tested to develop a universal predictor for nanofluid specific heat. To enhance the performance of the machine learning models, the best set of input variables was selected, and hyperparameter optimization was conducted to maximize the prediction accuracy. The accuracy of three selected machine learning models [i.e., MLP (a type of ANN), SVR, and XGBoost] and their unseen data prediction capability were compared with existing complicated empirical models, and the results showed that the machine learning-based predictions were more accurate. The machine learning models demonstrated excellent agreement with experimental nanofluid specific heat data. Particularly, the extreme gradient boosting method (i.e., XGBoost) showed the best nanofluid specific heat forecast results with minimal prediction error and presented broad range of applicability.

Publisher

Begell House

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3