Author:
Le Gall Guillaume,Thebault Martin,Caliot Cyril,Ramousse Julien
Reference22 articles.
1. Garcia-Cuesta, E., Aler, R., del Pozo-Vazquez, D. and Galvan, I. M., 'A combination of supervised dimensionality reduction and learning methods to forecast solar radiation', Applied Intelligence, Retrieved November 09, 2022 from https://doi.org/10.1007/s10489-022-04175-y (2022).
2. IEA, 'Solar Energy Perspectives', Tech. rep., International Energy Agency (IEA), Paris, Available at https://www.iea.org/reports/solar-energy-perspectives [accessed December 4, 2022] (2011).
3. Freitas, S., Catita, C., Redweik, P. and Brito, M. C., 'Modelling solar potential in the urban environment: State-of-the-art review', Renewable and Sustainable Energy Reviews, 41, pp. 915-931, doi:https://doi.org/10.1016/j.rser.2014.08.060 (2015).
4. Caliot, C., Schoetter, R., Forest, V., Eymet, V. and Chung, T., 'Model of Spectral and Directional Radiative Transfer in Complex Urban Canopies with Participating Atmospheres', Boundary-Layer Meteorology, Retrieved November 02, 2022 from https://doi.org/10.1007/s10546-022-00750-5 (2022).
5. Johari, F., Peronato, G., Sadeghian, P., Zhao, X. and Widen, J., 'Urban building energy modeling: State of the art and future prospects', Renewable and Sustainable Energy Reviews, 128, p. 109902, doi:https://doi.org/10.1016/j.rser.2020.109902 (2020).