Effect of in series and in parallel flow heater configuration of solar heat system for industrial processes

Author:

Ghabour RajabORCID,Korzenszky PéterORCID

Abstract

The boiler is an enclosed vessel that transfers the energy from fuel combustion or electricity into hot water or steam. Then, this hot water or pressurized steam is used for transferring the heat to a certain heat process. Usually, the required hot water or steam keeps on varying throughout the day which also may be implied on the daily or monthly load. Therefore, several configurations of connecting the boiler into the solar heating system ensure the temperature of the final output. The boiler can be connected in series or parallel to improve the efficiency of the overall process as well as to reduce the running costs. This paper presents a simulation study of a solar heating system for industrial processes. Two flow-heater system configurations are designed for covering the heat demand of a pasteurising factory existing in Budapest, Hungary. The configuration “A” consists of a solar heating system for hot water preparation using in series flow heater configuration. While configuration “B” consists of the same solar system but with a parallel flow heater configuration. These system configurations are modelled using T*sol software for evaluating the system performance under the Hungarian climate from five different aspects: required collector area, glycol ratio, volume flow rate, relative tank capacity, and tank height-to-diameter ratio. According to the optimum design parameters, in series configuration is better than parallel by 3.14% at 45 m² collector area, 0.45% at 25% glycol ratio, 0.42% at 50 l/h · m² volume flow rate, 2.05% at 50 l/m² relative tank capacity, and 0.42% at 1.8 tank height-to-diameter ratio respectively. The results show that in series configuration is better in terms of solar fractions than parallel configuration from all five aspects.

Publisher

University of Applied Sciences in Tarnow, Poland

Reference26 articles.

1. Gautam A, Chamoli S, Kumar A, Singh S. A review on technical improvements, economic feasibility and world scenario of solar water heating system. Renewable and Sustainable Energy Reviews. 2017;68:541–562. https://doi.org/10.1016/j.rser.2016.09.104.

2. Benli H. Potential application of solar water heaters for hot water production in Turkey. Renewable and Sustainable Energy Reviews. 2016;54:99–109. https://doi.org/10.1016/j.rser.2015.09.061.

3. Kempener R. Solar heat for industrial processes: Technology brief. IEA-ETSAP and IRENA; 2015. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA_ETSAP_Tech_Brief_E21_Solar_Heat_Industrial_2015.pdf.

4. Benécs J, Hermanucz P, Dodog Z. Applying of Intelligent Measuring System (IMRe) in food refrigeration. In: Piroska V, László M, editors. XIX. International Conference Risk Factors of Food Chain 2018. Book of Abstracts. Mátrafüred: Szent István University Publisher Nonprofit Ltd; 2018. p. 17.

5. IEA. Key World Energy Statistics 2017. Paris: International Energy Agency; 2017. https://doi.org/10.1787/key_energ_stat-2017-en.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3