1. Bjerrum, L. 1967. Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings. Geotechnique 17(2): 81–118. Degago, S. A., Grimstad, G., Jostad, H. P. & Nordal, S. 2009. The non-uniqueness of the end-of-primary (EOP) void ratio-effective stress relationship. Proc.17th Int. Conf. Soil Mech. Geotech. Engng, Alexandria. 1: 324–327. Eringen,A. C. 1967. Mechanics of Continua. NewYork: John Wiley & Sons. Eringen, A. C. 2002. Nonlocal Continuum Field Theories. New York: Springer-Verlag. Feng, T.W. 1991. Compressibility and permeability of natural soft clays and surcharging to reduce settlements. PhD dissertation, University of Illinois at Urbana-Champaign. Hawlader, B. C., Muhunthan, B. & Imai, G. 2003. Viscosity effects on one-dimensional consolidation of clay. ASCE, International Journal of Geomechanics 3(1): 99–110. Janbu, N. 1996. The resistance concept applied to deformations of soils. Proc. 7th Int. Conf. Soil Mech. Found. Engng, Mexico. 1: 191–196. Ladd, C. C. & DeGroot, D. J. 2003. Recommended Practice for Soft Ground Site Characterization: Arthur Casagrande Lecture. 12th Pan-American Conf. Soil Mech. Geotech. Engng, MIT. 1: 3–57. Ladd, C. C., Foott, R., Ishihara, K., Schlosser, F. & Poulos, H. G. 1997. Stress-deformation and strength characteristics. State-of-the-Art Report. Proc. 9th Int. Conf. Soil Mech. Found. Engng, Tokyo. 2: 421–494. Leroueil, S. 2006. Šuklje Memorial Lecture: The isotache approach. Where are we 50 years after its development by Professor Šuklje? 13th Danube-European Conf. Geotech. Engng. Ljubljana, Slovenia. 2: 55–88. Leroueil, S., Kabbaj, M., Tavenas, F. & Bouchard, R. 1985. Stress-strain-strain rate relation for the compressibility of sensitive natural clays. Geotechnique 35(2): 159–180. Mesri, G. 1990. Discussion: Viscous-Elastic-Plastic Modeling of One-Dimensional Time-Dependent Behavior of Clays. Canadian Geotechnical Journal 27(2): 259–261. Mesri, G. 2003. Primary and secondary compression. ASCE, Geotechnical special publication 119: 122–166. Mesri, G. & Vardhanabhuti, B. 2006. Closure: Secondary compression. Journal of Geotechnical and Geoenvironmental Engineering 132(6): 817–818. Mesri, G. & Choi, Y. K. 1985a. Settlement analysis of embankments on soft clays. ASCE, Journal of the Geotechnical Engineering Division. 111(4): 441–464. Mesri, G. & Choi, Y. K. 1985b. The uniqueness of the end-of-primary (EOP) void ratio-effective stress relationship. Proc. 11th Int. Conf. Soil Mech. Found. Engng, San Francisco. 2:587–590. Mesri, G., Feng, T. W. & Shahien, M. 1995. Compressibility Parameters During Primary Consolidation. Int. Symp. Compression and Consolidation of Clayey Soils, Hiroshima: 201–217. Mesri, G. & Rokhsar, A. 1974. Theory of consolidation for clays. ASCE, Journal of the Soil Mechanics and Foundations Division. 100(GT8): 889–904. Šuklje, L. 1957. The analysis of the consolidation process by the isotaches method. Proc. 4th Int. Conf. Soil Mech. Found. Engng, London. 1: 200–206. Vermeer, P. A. & Neher, H. P. 1999. A soft soil model that accounts for creep. In R.B.J. Brinkgreve (ed.), Proc. Int. Symp. Beyond 2000 in Comput. Geotech.: 10 Years of Plaxis International: 249–261. Rotterdam: Balkema. Yin, J. H. & Graham, J. 1990. Reply: Viscous-elastic-plastic Modelling of One-dimensional Time-dependent Behavior of Clays. Canadian Geotechnical Journal 27(2): 262–265.