Electron Beam Welding of Aluminum Alloys

Author:

Sobih Mohamed1,Elseddig Zuhair2

Affiliation:

1. Industrial Systems Engineering, October University for Modern Sciences and Arts, 26 July Mehwar Road intersection with Wahat Road, 6 October city, Giza, Egypt

2. Sudanese Armed Forces, Khortoum, Sudan

Abstract

Aluminum alloys are the subject of increasing interest in the automotive industry, as well as the aircraft industry, aiming to reduce the weight of components and also allowing a profit in term of energy saving. In assembly process, riveting has been widely used in the aircraft industry, whereas welding seems to be available in the car industry in the case of aluminum alloys. Nevertheless, conventional fusion welding can generate defects, such as gas porosity, oxide inclusions, solidification cracking (hot tearing), reduced strength in both the weld, and heat-affected zone (HAZ), which could limit its development. Electron beam welding (EBW) has unique advantages over other traditional fusion welding methods due to high energy density, deep penetration, large depth-to-width ratio, and small HAZ. EBW has been developed for many years and is being increasingly implemented in various industrial applications. In many cases, it has proven to be an efficient method for joining difficult to weld materials. One of the major problems associated with the EBW is how to select a proper combination of the process parameters because improper selection of these parameters causes defects in the weld joint, which could seriously influence the weld mechanical properties. This work introduces an overview of the EBW process, its parameters, process simulation, process optimization, and finally characterization of the electron beam weld joint of 2219 aluminum alloy.

Publisher

CRC Press

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3