Corrosion-Induced Hydrogen Embrittlement in AA2024

Author:

Haidemenopoulos G.N.1,Kamoutsi Helen J.1

Affiliation:

1. Mechanical Engineering, University of Thessaly, Pedion Areos, Volos, Magnisia, 38334, Greece

Abstract

Embrittlement of aluminum alloy 2024 caused by corrosion-induced hydrogen evolution and trapping is discussed in this article. The current literature on corrosion mechanisms, hydrogen trapping, and mechanisms of hydrogen embrittlement is briefly reviewed. Accelerated corrosion tests followed by thermal desorption spectroscopy enabled the identification of hydrogen traps in the microstructure of the material. The nature of these traps was identified by controlled experiments involving solution treatments and plastic deformation prior to corrosion, in order to alter the alloy microstructure. The high-temperature trap is related to the S–CuMgAl2 phase. In the absence of this phase, hydrogen is trapped in vacancies, which liberate hydrogen at even higher temperatures. The lower temperature trap is related to dislocations. The hydrogen trapped at dislocations increases with plastic strain up to a certain strain and then decreases. The hydrogen generated by corrosion diffuses in the interior of the material and establishes a hydrogen-affected zone beneath the corrosion layer. Removal of the corrosion layer leads to complete restoration of yield strength but only partial restoration of ductility. Removal of the corrosion layer and heating at a high enough temperature to activate all traps for hydrogen desorption leads to complete restoration of ductility. A mechanism of corrosion-induced hydrogen embrittlement is suggested.

Publisher

CRC Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3