Quench Sensitivity and Continuous Cooling Precipitation Diagrams

Author:

Kessler Olaf1,Milkereit Benjamin1,Schick Christoph2

Affiliation:

1. Chair of Materials Science, Faculty of Mechanical Engineering and Marine Technology, Rostock University, Albert-Einstein-Str. 2, Rostock, 18051, Germany; Competence Center °CALOR of Rostock University, Germany

2. Chair of Polymer Physics, Faculty of Mathematics and Natural Science, Rostock University, Albert-Einstein-Str. 25, Rostock, 18051, Germany; Competence Center °CALOR of Rostock University, Germany

Abstract

The application properties of metallic materials are frequently adjusted by heat treatments utilizing controlled microstructural changes—i.e., solid–solid phase transformations like nondiffusional martensitic transformation or diffusional secondary phase precipitation and/or dissolution. For technical application, knowledge about the characteristic temperatures and times but moreover about their time dependence (kinetics) is required. As the relevant solid–solid phase transformations all show a heat effect (e.g., precipitation → exothermic; dissolution → endothermic), one outstanding measurement technique to follow these phase transformations is calorimetry, particularly differential scanning calorimetry (DSC). Appropriate combinations of DSC methods and devices to cover nine orders of magnitude in heating and cooling rates (10−4–105 K/s) will be introduced, using dissolution and precipitation reactions in aluminum alloys as examples. Basically, these techniques allow one to record time–temperature transformation (or precipitation/dissolution) diagrams for various materials during heating, isothermal annealing, and even during continuous cooling, making DSC a very powerful tool for the investigation of solid–solid phase transformations. Nowadays, physically based models verified with DSC results moreover allow one to predict precipitation volume fractions and solute mass fractions.

Publisher

CRC Press

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3