Affiliation:
1. Institute of Materials Science and Engineering, Donghua University Yan’anlu Campus, 1882 Yan’an Rd, Shanghai, 200051, China
Abstract
The microstructure, mechanical properties, and fracture of nodular silicon hypereutectic Al–Si alloys containing 12–30 wt% Si are discussed. The eutectic and primary silicon particles are nodulized, offering an average aspect ratio of 1.60–1.70 with a designed modification practice followed by a solution heat treatment of 8–10 h at 510°C–520°C. Such a soaking temperature does not result in coarsening or clustering of the silicon particles. Nodulization of silicon phase leads to an increase in the tensile strength and ductility of alloys at room and elevated temperatures compared with commercial Al–Si alloys. Increasing the Si content leads the tensile strength and elongation of alloys at room temperature to fall down due to the formation of coarsen primary Si grains, but the ultimate tensile strength at 300°C remains unchanged. The ultimate tensile strength σb-alloy of hypereutectic Al–Si alloys is inversely proportional to square root of maximum silicon size dmax. The initiation and propagation of the crack with continuous increase in applied loading were observed under scanning electron microscope. The fracture surfaces in nodular silicon Al–Si alloys are composed of equiaxed ductile dimples. The finite-element method has been used to study the stress distribution within the different morphologies of Si grain and how Si and Al phases interact during loading.