Evaluation of Microleakage by Gas Permeability and Marginal Adaptation of MTA and Biodentine™ Apical Plugs: In Vitro Study

Author:

Brenes-Valverde DDS Karen,Conejo-Rodríguez PhD Elian,Vega-Baudrit PhD José Roberto,Montero-Aguilar MSc Mauricio,Chavarría-Bolaños MSc, PhD Daniel

Abstract

The endodontic treatment of teeth with incomplete development is always a complex task. Nowadays, biomaterials such as bioceramics offers promising clinical evidence that supports its use. However, the standardization of its use for apexification purpose still needs a deeper understanding of the materials’ behavior. The aim of this investigation was to evaluate the marginal adaptability and microleakage by gas permeability of MTA and Biodentine™ apical plugs in an in vitro model. Materials and methods: Twenty-four single rooted human teeth were selected according to previously stablished inclusion criteria. All samples were prepared obtaining standard cylindrical internal canals with a diameter of 1.3 mm. Root canals were gently rinsed using 5.25% sodium hypochlorite and EDTA 17%. The apical 3mm and remaining coronal dental structure were sectioned to obtain 10mm roots. Roots were randomly assigned to 3 different groups as follows: GROUP A: MTA (n=10), GROUP B: Biodentine™ (n=10) and Group C: Control (positive n=1, negative n=3). MTA and Biodentine™ were prepared according to manufacturer’s indications, and apical plugs of 4mm were passively placed in the correspondent teeth. All samples were stored in saline solution for 7 days at 37°C before evaluation. Samples were mounted in cylindrical sample-holders using epoxy resin. Microleakage was evaluated with an automatic permeability detector that calculates nitrogen diffusion between the material-root interphase. After microleakage evaluation, the samples were recovered and analyzed by scanning electron microscopy (SEM). Microleakage results were analyzed using Chi-square and adaptation was evaluated with a descriptive analysis. Results: None of the evaluated materials completely avoided the nitrogen microleakage (positive leakage of 10% and 20% of samples for MTA and Biodentine™ respectively); with no statistical significant difference between groups (p=0.527).  All apical plugs showed good adaptation under SEM, at 30x, 200x, 1000x and 2500x; with microscopical structures similar to previous reports. Conclusions: Both bioceramics behave similar when used as apical barriers to avoid permeability, with acceptable marginal adaptation. Further in vivo studies are needed to validate these results.  

Publisher

Universidad de Costa Rica

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3