High population density in arracacha (Arracacia xanthorrhiza Bancroft) increase radiation interception, yield, and profitability

Author:

Quevedo Amaya Yeison MauricioORCID,Villamil Carvajal Jorge EnriqueORCID,Garnica Montaña Joanna PaolaORCID,Montenegro Ramos OmarORCID,Barragán Quijano EduardoORCID

Abstract

Introduction. Arracacha (Arracacia xanthorrhiza Bancroft) a promising crop due to its nutritional and gastronomic relevance. Population density is an agronomic practice that increases water and radiation use efficiencies, maximizes the yield, and crop profitability. However, the selection of the optimal population density based on physiological, agronomic, and economic criteria for arracacha has not been studied. Objective. To describe the effect of different population densities on the physiology, yield, and profitability of arracacha. Materials and methods. The experiment was conducted in Cajamarca, Colombia in 2019. There, the soil water potential, relative chlorophyll content, photosynthesis, stomatal conductance, water use efficiency, leaf temperature depression, photosynthetic reflectance index, leaf area index, the fraction of light interception, light extinction coefficient, cracking index, yield, and profitability were evaluated. Results. The results showed that high population densities did not generate water deficit because there were no significant differences for the soil water potential, leaf temperature depression, and photosynthetic reflectance index. Furthermore, no nutritional deficiencies were evidenced because the relative chlorophyll content (<32 SPAD) was higher at the critical level. Due to this, no limitations were observed in leaf gas exchange processes. However, the densities of 25,000 and 30,000 plants ha-1 showed a higher fraction of light interception due to the increase in the leaf area index; this allowed to obtain a higher yield at these densities. Conclusion. The maximum yield (41.96 t ha-1) and profitability (US$ 15,333.06 ha-1) were reached with a population density of 22,222 plants ha-1.

Publisher

Universidad de Costa Rica

Subject

Soil Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3