Seasonal droughts during the Miocene drove the evolution of Capparaceae towards Neotropical seasonally dry forests

Author:

Mercado-Gómez Jorge D.ORCID,Morales-Puentes María E.ORCID,Gonzalez Mailyn A.ORCID,Velasco Julián A.ORCID

Abstract

Introduction: Neotropical seasonally dry forest (NSDF) climatic constraintsincreased endemism, and phylogenetic niche conservatism in species that are restricted to thisbiome. NSDF have a large number of endemic Capparaceae taxa, but it is unknown ifphylogenetic niche conservatism has played a role in this pattern. Objective: We carried out anevolutionary analysis of the climatic niche of neotropical species of Capparaceae to identifywhether the climatic constraints of NSDF have played a major role throughout the family’sevolutionary history. Methods: Using three chloroplastic (ndhF, matK, rbcL) and one ribosomal(rsp3) DNA sequences, we proposed a date phylogeny to reconstruct the evolutionary climaticniche dynamics of 24 Neotropical species of Capparaceae. We tested the relationship betweenniche dissimilarity and phylogenetic distance between species using the Mantel test. Likewise,we used a set of phylogenetic comparative methods (PGLS) on the phylogeny of Capparaceae toreconstruct the main evolutionary historic events in their niche. Results: Capparaceae originatedin humid regions and subsequently, convergent evolution occurred towards humid and dry forestduring the aridification phases of the Middle Miocene (16-11 Mya). However, adaptationtowards drought stress was reflected only during the precipitation of the coldest quarter, wherewe found phylogenetic signal (Pagel ) for gradual evolution and, therefore, evidence ofphylogenetic niche conservatism. We found convergent species-specific adaptations to bothdrought stress and rainfall during the Miocene, suggesting a non-phylogenetic structure in mostclimatic variables. Conclusions: Our study shows how the Miocene climate may haveinfluenced the Capparaceae speciation toward driest environments. Further, highlights thecomplexity of climatic niche dynamics in this family, and therefore more detailed analyses arenecessary in order to better understand the NSDF climatic constrictions affected the evolution ofCapparaceae.

Publisher

Universidad de Costa Rica

Subject

General Agricultural and Biological Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3