Herramientas de corte para optimizar parámetros de clasificación de especies maderables con redes neuronales convolucionales

Author:

Centeno Thonny BehykerORCID,Ferreira CassianaORCID,Inga Janet GabyORCID,Vélez AndrésORCID,Huacho RaulORCID,Vidal Osir DaygorORCID,Moya Sthefany MadjoryORCID,Reyes Danessa ClaritaORCID,Goytendia Walter EmilioORCID,Ascue Benji SteveORCID,Tomazello-Filho MarioORCID

Abstract

Introducción: La gran diversidad de especies maderables tropicales demanda el desarrollo de nuevas tecnologías de identificación con base en sus patrones o características anatómicas. La aplicación de redes neuronales convolucionales (CNN) para el reconocimiento de especies maderables tropicales se ha incrementado en los últimos años por sus resultados prometedores. Objetivo: Evaluamos la calidad de las imágenes macroscópicas con tres herramientas de corte para mejorar la visualización y distinción de las características anatómicas en el entrenamiento del modelo CNN. Métodos: Recolectamos las muestras entre el 2020 y 2021 en áreas de explotación forestal y aserraderos de Selva Central, Perú. Luego, las dimensionamos y, previo a la identificación botánica y anatómica, las cortamos en secciones transversales. Generamos una base de datos de imágenes macroscópicas de la sección transversal de la madera, a través del corte, con tres herramientas para ver su rendimiento en el laboratorio, campo y puesto de control. Resultados: Usamos tres herramientas de corte para obtener una alta calidad de imágenes transversales de la madera; obtuvimos 3 750 imágenes macroscópicas con un microscopio portátil que corresponden a 25 especies maderables. El cuchillo “Tramontina” es duradero, pero pierde el filo con facilidad y se necesita una herramienta para afilar, el cúter retráctil “Pretul” es adecuado para madera suave y dura en muestras pequeñas de laboratorio; el cuchillo “Ubermann” es apropiado para el campo, laboratorio y puesto de control, porque tiene una envoltura duradera y láminas intercambiables en caso de pérdida de filo. Conclusiones: La calidad de las imágenes es decisiva en la clasificación de especies maderables, porque permite una mejor visualización y distinción de las características anatómicas en el entrenamiento con los modelos de red neuronal convolucional EfficientNet B0 y Custom Vision, lo cual se evidenció en las métricas de precisión.

Publisher

Universidad de Costa Rica

Subject

General Agricultural and Biological Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3