TERMOELEKTRİK SOĞUTMA MODÜLLERİNİN SOĞUTMA PERFORMANSI: DENEYSEL VE SAYISAL YÖNTEMLER

Author:

KAHRAMAN İlker1,DEREBAŞI Naim1

Affiliation:

1. BURSA ULUDAG UNIVERSITY

Abstract

A novel pulse-driving method in which the pulse frequency modulation is was developed by optimising the input power owing to the duty cycle of rectangular wave to enhance the cooling efficiency and thermal stability of the thermoelectric module. The aim of this driving method is to have better control of the thermoelectric cooler module temperature and to improve its coefficient of performance. In this method, the average current and the peak of pulse drive are in the 50% duty cycle with the same magnitude and the performance of Peltier module driving with average dc is compared with the pulse driving. The measurement results show that the coefficient of performance of the thermoelectric module with the pulse-frequency modulation driving method increased up to 102% as compared to the constant dc driving method. An artificial neural network has been successfully used to analyse these experimentally collected data and predict the performance of the module. When the developed artificial neural network model was tested using untrained data, the average correlation of the model was 99% and the overall prediction error was 1.38%. An accurate and simple analytical equation based on the predicted and experimental results was determined using the MATLAB® Curve Fitting Toolbox. The average correlation of the analytical model was 0.99 and the root-mean-square error was 0.074.

Publisher

Turk Isi Bilimi Ve Teknigi Dernegi

Subject

General Engineering,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3