THE PRACTICAL INTERGRATION OF LINEAR ALGEBRA IN GENETICS, CUBIC SPLINE INTERPOLATION, ELECTRIC CIRCUITS AND TRAFFIC FLOW

Author:

James Audu Khadeejah James1ORCID,Elisha Chiben Yak1ORCID,Yahaya Yusuph Amuda2ORCID,Akande Sıkırulaı1ORCID

Affiliation:

1. Federal University of Technology, Minna, Nigeria

2. Pen Resource University, Gombe

Abstract

A fundamental mathematical field with many applications in science and engineering is linear algebra. This paper investigates the various applications of linear algebra in the fields of traffic flow analysis, electric circuits, cubic spline interpolation, and genetics. This research delves into individual applications while emphasizing cross-disciplinary insights, fostering innovative solutions through the convergence of genetics, cubic spline interpolation, circuits, and traffic flow analysis. The research employs specific methodologies in each application area to demonstrate the practical integration of linear algebra in genetics, cubic spline interpolation, electric circuits, and traffic flow analysis. In genetics, linear algebra techniques are utilized to represent genetic data using matrices, analyze genotype distributions across generations, and identify genotype-phenotype associations. For cubic spline interpolation, linear algebra is employed to construct smooth interpolating curves, involving the derivation of equations for spline functions and the determination of coefficients using boundary conditions and continuity requirements. In electric circuit analysis, linear algebra is crucial for modeling circuit elements, formulating systems of linear equations based on Kirchhoff's laws, and solving for voltage and current distributions in circuits. In traffic flow analysis, linear algebra techniques are used to represent traffic movement in networks, formulate systems of linear equations representing traffic flow dynamics, and solve for traffic flow solutions to optimize transportation networks. By addressing contemporary challenges, emerging research frontiers, and future trajectories at the intersection of linear algebra and diverse domains, this study underscores the profound impact of mathematical tools in advancing understanding and resolving complex real-world problems across multiple fields.

Publisher

Bitlis Eren University Journal of Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3