Machine- and Deep Learning Modelling Trends for Predicting Harmful Cyanobacterial Cells and Associated Metabolites Concentration in Inland Freshwaters: Comparison of Algorithms, Input Variables, and Learning Data Number
Author:
Publisher
Korean Society of Limnology
Subject
Environmental Engineering
Reference75 articles.
1. Al-Sulttani, A.O. , M. Al-Mukhtar, A.B. Roomi, A.A. Farooque, K.M. Khedher and Z.M. Yaseen.2021. Proposition of new ensemble data-intelligence models for surface water quality prediction. IEEE (Institute of Electrical and Electronics Engineers) Access 9: 108527-108541.
2. Anderson, D.M. , A.D. Cembella and G.M. Hallegraeff.2012. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annual Review of Marine Science 3: 143- 176.
3. Baker, R.E. , J.M. Pena, J. Jayamohan and A. Jerusalem.2018. Mechanistic models versus machine learning, a fight worth fighting for the biological community? Biology Letters 14: 20170660.
4. Bertone, E. , M.A. Burford and D.P. Hamilton.2018. Fluorescence probes for real-time remote cyanobacteria monitoring: a review of challenges and opportunities. Water Research 141: 152-162.
5. Bruder, S. , M. Babbar-Sebens, L. Tedesco and E. Soyeux.2014. Use of fuzzy logic models for prediction of taste and odor compounds in algal bloom-affected inland water bodies. Environmental Monitoring Assessment 186: 1525-1545.
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3