Motor-Imagery EEG Signal Classification using Optimized Support Vector Machine by Differential Evolution Algorithm

Author:

Fard L.A.1,Jaseb K.2,Mehdi Safi S.M.1

Affiliation:

1. Department of Biomedical Engineering, Dezful Branch, Islamic Azad University, Dezful, Iran.

2. Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Abstract

Background: Motor-Imagery (MI) is a mental or cognitive stimulation without actual sensory input that enables the mind to represent perceptual information. This study aims to use the optimized support vector machine (OSVM) by differential evolution algorithm for motor-Imagery EEG signal classification. Methods: A total of three filters were applied to each signal during the preprocessing phase. The bandstop filter was used to remove urban noise and signal recorders, the median filter to remove random sudden peaks in the signal, and finally, the signal was normalized using the mapminmax filter. The most valuable features were extracted including mean signal intensity, minimum signal value, signal peak value, signal median, signal standard deviation, energy, corticoids, entropy, and signal skewness. Results: The accuracy of the SVM for linear, Gaussian, polynomial, and radial base kernels was 67.3%, 55.1%, 63.6%, and 55.1%, respectively, which was optimized after the classification model by differential evolution algorithm; however, the accuracy for OSVM was increased to 99.6%. Conclusion: Examination of the brain signal appearance for uniform motor-Imagery of both hands showed a significant difference between the signal of motor-Imagery mode with OSVM algorithm (99.6% accuracy), which gave promising results for classification motor imagery EEG signal.

Publisher

Yerevan State Medical University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3