Efficient Busbar Slip Defects Detection in Photovoltaic Cell Electroluminescence Images

Author:

Simsek Kaya Sahra1ORCID,Gümüşçü Abdülkadir1ORCID,Beşli Nurettin1ORCID

Affiliation:

1. HARRAN ÜNİVERSİTESİ

Abstract

PV panel quality control is crucial for their efficient and long-lasting operation. Detecting defects in PV panels during production is essential. Electroluminescence imaging is a commonly used method for fault detection in PV panels. This study focuses on detecting busbar slippage, a specific PV panel malfunction. Automatic error detection was researched using machine learning methods on a dataset of 500 EL images taken from the production line. Feature extraction was performed using two pre-trained deep learning architectures: ResNet and SqueezeNet. Additionally, the study aimed to observe the impact of combining features from different deep learning architectures on success parameters. The highest accuracy rate of 0.9920 was achieved using deep features extracted by Relu34 and Relu25+Conv10 layers.

Funder

Harran University Scientific Research Projects Commission

Publisher

Adiyaman University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3