Correcting for Verbal Autopsy Misclassification Bias in Cause-Specific Mortality Estimates

Author:

Fiksel Jacob1,Gilbert Brian2,Wilson Emily3,Kalter Henry3,Kante Almamy3,Akum Aveika3,Blau Dianna4,Bassat Quique56789,Macicame Ivalda10,Samo Gudo Eduardo10,Black Robert3,Zeger Scott2,Amouzou Agbessi3,Datta Abhirup2

Affiliation:

1. Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania;

2. Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland;

3. Department of International Health, Johns Hopkins University, Baltimore, Maryland;

4. Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia;

5. ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain;

6. Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique;

7. ICREA, Barcelona, Spain;

8. Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain;

9. Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain;

10. Instituto Nacional de Saúde (INS), Maputo, Mozambique

Abstract

ABSTRACT. Verbal autopsies (VAs) are extensively used to determine cause of death (COD) in many low- and middle-income countries. However, COD determination from VA can be inaccurate. Computer coded verbal autopsy (CCVA) algorithms used for this task are imperfect and misclassify COD for a large proportion of deaths. If not accounted for, this misclassification leads to biased estimates of cause-specific mortality fractions (CSMFs), a critical piece in health-policy making. Recent work has demonstrated that the knowledge of the CCVA misclassification rates can be used to calibrate raw VA-based CSMF estimates to account for the misclassification bias. In this manuscript, we review the current practices and issues with raw COD predictions from CCVA algorithms and provide a complete primer on how to use the VA calibration approach with the calibratedVA software to correct for verbal autopsy misclassification bias in cause-specific mortality estimates. We use calibratedVA to obtain CSMFs for child (1–59 months) and neonatal deaths using VA data from the Countrywide Mortality Surveillance for Action project in Mozambique.

Publisher

American Society of Tropical Medicine and Hygiene

Subject

Virology,Infectious Diseases,Parasitology

Reference31 articles.

1. The WHO 2016 verbal autopsy instrument: an international standard suitable for automated analysis by InterVA, InSilicoVA, and tariff 2.0;Nichols,2018

2. Limitations to current methods to estimate cause of death: a validation study of a verbal autopsy model;Menéndez,2020

3. Verbal autopsy: current practices and challenges;Soleman,2006

4. Validation of the symptom pattern method for analyzing verbal autopsy data;Murray,2007

5. Strengthening standardised interpretation of verbal autopsy data: the new InterVA-4 tool;Byass,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3