Flow Cytometric Sorting of Infected Erythrocytes Demonstrates Reliable Detection of Individual Ring-Stage Plasmodium falciparum Parasites by Plasmodium 18S rRNA Reverse Transcription Polymerase Chain Reaction

Author:

Matsubara Jokichi12,Chang Ming12,Seilie Annette M.12,Murphy Sean C.123

Affiliation:

1. Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington;

2. Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington;

3. Department of Microbiology, University of Washington, Seattle, Washington

Abstract

ABSTRACT. Molecular diagnostic tests for Plasmodium falciparum parasites are increasingly used to enable ultrasensitive detection of infection in clinical trials and field surveillance studies. Ribonucleic acid (RNA)-based assays targeting 18S rRNA are particularly sensitive with limits of detection reported to comprise a single infected red blood cell (RBC) in a relatively large volume of blood. However, the validation testing at such limiting concentrations is hampered by the so-called Poisson distribution of such rare events, which can lead laboratorians to inaccurately set the limit of detection higher (i.e., less sensitive) than the assay can actually detect. Here we set out to formally demonstrate the analytical sensitivity of the Plasmodium 18S rRNA quantitative reverse transcription PCR (qRT-PCR). Fluorescence-activated cell sorting (FACS) was used on synchronous P. falciparum cultures doubly stained for DNA and RNA and was followed by qRT-PCR on the individual sorted cells spiked with negative whole blood. Over 95% of individual single-ring infected RBCs were detected by qRT-PCR. The formally measured median 18S rRNA content per individual ring-stage P. falciparum parasite was 9,550 copies (interquartile range 8,130–12,300). Thus, one can confidently rely on Plasmodium 18S rRNA qRT-PCR to detect one parasite per 50-µL blood sample.

Publisher

American Society of Tropical Medicine and Hygiene

Subject

Virology,Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3