A Bayesian Mixture Model for Predicting the COVID-19 Related Mortality in the United States

Author:

Kaciroti Niko A.12,Lumeng Carey3,Parekh Vikas4,Boulton Matthew L.45

Affiliation:

1. 1Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan;

2. 2Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan;

3. 3Pediatrics-Pulmonary Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan;

4. 4Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan;

5. 5Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan

Abstract

ABSTRACTAn outbreak of SARS-CoV-2 has led to a global pandemic affecting virtually every country. As of August 31, 2020, globally, there have been approximately 25,500,000 confirmed cases and 850,000 deaths; in the United States (50 states plus District of Columbia), there have been more than 6,000,000 confirmed cases and 183,000 deaths. We propose a Bayesian mixture model to predict and monitor COVID-19 mortality across the United States. The model captures skewed unimodal (prolonged recovery) or multimodal (multiple surges) curves. The results show that across all states, the first peak dates of mortality varied between April 4, 2020 for Alaska and June 18, 2020 for Arkansas. As of August 31, 2020, 31 states had a clear bimodal curve showing a strong second surge. The peak date for a second surge ranged from July 1, 2020 for Virginia to September 12, 2020 for Hawaii. The first peak for the United States occurred about April 16, 2020—dominated by New York and New Jersey—and a second peak on August 6, 2020—dominated by California, Texas, and Florida. Reliable models for predicting the COVID-19 pandemic are essential to informing resource allocation and intervention strategies. A Bayesian mixture model was able to more accurately predict the shape of the mortality curves across the United States than other models, including the timing of multiple peaks. However, given the dynamic nature of the pandemic, it is important that the results be updated regularly to identify and better monitor future waves, and characterize the epidemiology of the pandemic.

Publisher

American Society of Tropical Medicine and Hygiene

Subject

Virology,Infectious Diseases,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3