Integrating Domain Knowledge with Deep Learning Model for Automated Worker Activity Classification in mobile work zone

Author:

Tian Chi,Chen Yunfeng,Zhang Jiansong,Feng Yiheng

Abstract

Accurate classification of workers’ activity is critical to ensure the safety and productivity of construction projects. Previous studies in this area are mostly focused on building construction environments. Worker activity identification and classification in mobile work zone operations is more challenging, due to more dynamic operating environments (e.g., more movements, weather, and light conditions) than building construction activities. In this study, we propose a deep learning (DL) based classification model to classify workers’ activities in mobile work zones. Sensor locations are optimized for various mobile work zone operations, which helps to collect the training data more effectively and save cost. Furthermore, different from existing models, we innovatively integrate transportation and construction domain knowledge to improve classification accuracy. Three mobile work zone operations (trash pickup, crack sealing, and pothole patching) are investigated in this study. Results show that although using all sensors has the highest performance, utilizing two sensors at optimized locations achieves similar accuracy. After integrating the domain knowledge, the accuracy of the DL model is improved. The DL model trained using two sensors integrated with domain knowledge outperforms the DL model trained using three sensors without integrating domain knowledge.

Publisher

International Council for Research and Innovation in Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3