Automated optimum visualization system for construction drawing reading

Author:

Swanborough Jack,Kim Min-Koo,Agapaki Eva,Brilakis Ioannis

Abstract

The task of reading drawings on construction sites has significant efficiency and cost problems. Recent products utilising laser projectors attempt to address the issue of drawing comprehension by projecting full scale versions of the drawings onto 3D surfaces, giving an in-place representation of the steps required to complete a task. However, they only allow projection in red or green at a single brightness level due to the inherent constraints of using a laser-based system, which could cause problems depending on the surface to be projected on and the ambient conditions. Thus, there is a need for a solution that is able to adjust the visualisation parameters of the displayed information based on the surface being projected onto. This study presents a system that automatically changes the visualisation parameters based on the colour and texture of the current surface to make drawings visible under any planar-like surfaces. The proposed system consists of software and hardware, and the software algorithm contains of two parts 1) the optimisation run that computes and updates the visualisation parameters and 2) the detection loop which runs continually and checks if the optimisation run needs to be triggered or not. In order to verify the proposed system, tests on 8 subjects with 4 background surfaces commonly found on site were performed. The test subjects were timed to find 10 bolt holes projected onto the surface using the optimisation system, which was then compared to a control case of black lines projected onto a white background. The system allowed users to complete the task on the real-world backgrounds in the same time as the control case, with the system resulting in up to a 600% decrease in recognition time on some backgrounds.

Publisher

International Council for Research and Innovation in Building and Construction

Subject

Computer Science Applications,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3