Author:
Abualdenien Jimmy,Schneider-Marin Patricia,Zahedi Ata,Harter Hannes,Exner Hannah,Steiner Daniel,Mahan Singh Manav,Borrmann André,Lang Werner,Petzold Frank,König Markus,Geyer Philipp,Schnellenbach-Held Martina
Abstract
The early stages of building design involve the consideration of different design variants and their assessment regarding various performance criteria including energy consumption and costs. During the design process, the involved experts from different disciplines frequently exchange building information to develop a design that satisfies the project’s requirements and objectives. In the course of this iterative process, the building design evolves throughout multiple refinement stages. At the same time, different variants are developed. In BIM-based projects, the maturity of the design information provided by the model is expressed by the notion of Level of development (LOD). So far, however, there is no method to formally define the information requirements of a LOD. In particular, there are no means for expressing the uncertainty involved with the provided information. By contrast, despite the insufficient information available in early design stages, a BIM model appears precise and certain. This situation leads to false assumptions and model evaluations, for example, in the case of energy efficiency calculations or structural analysis. Hence, this paper presents an overview of a set of approaches that were developed to alleviate and preserve the consistency of the designed solutions. The approach includes the development of a multi-LOD meta-model, which allows one to explicitly describe the LOD requirements of each building component type incorporating the possible uncertainties, e.g. concerning the building dimensions. On the basis of this multi-LOD model, methods for evaluating a building design’s performance regarding the building’s structure and life cycle energy performance are proposed that take the defined uncertainties into account. To support the management of design variants in one consistent model, a graph-based approach is introduced. Finally, a minimized communication protocol is described to facilitate the workflow and communicate the evaluation results for supporting the decision-making process.
Publisher
International Council for Research and Innovation in Building and Construction
Subject
Computer Science Applications,Building and Construction,Civil and Structural Engineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献