Construction safety ontology development and alignment with industry foundation classes (IFC)

Author:

Farghaly Karim,Soman Ranjith K.,Collinge William,Mosleh Mojgan Hadi,Manu Patrick,Cheung Clara Man

Abstract

A pronounced gap often exists between expected and actual safety performance in the construction industry. The multifaceted causes of this performance gap are resulting from the misalignment between design assumptions and actual construction processes that take place on-site. In general, critical factors are rooted in the lack of interoperability around the building and work-environment information due to its heterogeneous nature. To overcome the interoperability challenge in safety management, this paper represents the development of an ontological model consisting of terms and relationships between these terms, creating a conceptual information model for construction safety management and linking that ontology to IfcOWL. The developed ontology, named Safety and Health Exchange (SHE), comprises eight concepts and their relationships required to identify and manage safety risks in the design and planning stages. The main concepts of the developed ontology are identified based on reviewing accident cases from 165 Reporting of Injuries, Diseases and Dangerous Occurrences Regulations (RIDDOR) and 31 Press Releases from the database of the Health and Safety Executive (HSE) in the United Kingdom. Consequently, a semantic mapping between the developed ontology and IfcOWL (the most popular ontology and schema for interoperability in the AEC sector) is proposed. Then several SPARQL queries were developed and implemented to evaluate the semantic consistency of the developed ontology and the cross-mapping. The proposed ontology and cross-mapping gained recognition for its innovation in utilising OpenBIM and won the BuildingSMART professional research award 2020. This work could facilitate developing a knowledge-based system in the BIM environment to assist designers in addressing health and safety issues during the design and planning phases in the construction sector.

Publisher

International Council for Research and Innovation in Building and Construction

Subject

Computer Science Applications,Building and Construction,Civil and Structural Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3