A Highly Sensitive Zirconium Hydrogen Phosphate Emitter for Ni Isotope Determination Using Thermal Ionization Mass Spectrometry

Author:

Li Chao-Feng,Chu Zhu-Yin,Wang Xuan-Ce,Feng Lian-Jun,Guo Jing-Hui

Abstract

The nickel isotope has a great potential for investigating biogeochemical processes in the geosciences and has been proven to be extremely useful for studying the chronology of the early solar system. As one of the most powerful techniques in metal isotopic ratio measurements, thermal ionization mass spectrometry (TIMS) shows poor sensitivity for Ni isotope ratio analysis, because the high ionization potential (7.640eV) of Ni makes it difficult to be ionized on a hot filament. In previous studies, a minimum of 1000 ng Ni was required using the classical Sigel-H3BO3-Al emitter or the Sigel-H3PO4-Al emitter. The present study is first to employ a highly sensitive zirconium hydrogen phosphate (Zr(HPO4)2) emitter to measure the Ni isotopes with TIMS. This emitter produces a significant enhancement in the ionization efficiency of Ni and enables the analysis of the Ni isotope at the 200 ng level with high precision. In addition, this newly developed emitter shows a strong inhibition to the Fe and Zn signals, which are the main potential isobaric interferences during Ni measurement. A series of analyses of the NIST SRM 986 standard demonstrated that an internal precision (2 RSE) of ± 0.03 to 0.05 ‰ can be achieved depending on the sample size. Analysis of the NIST SRM 986 standard also shows an external reproducibility (2 RSD, n = 10) of better than ± 0.11‰, even for Ni at 200 ng.

Publisher

Atomic Spectroscopy Press Limited

Subject

Spectroscopy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Atomic spectrometry update: review of advances in atomic spectrometry and related techniques;Journal of Analytical Atomic Spectrometry;2022

2. Analytical Methodologies for Agrometallomics: A Critical Review;Journal of Agricultural and Food Chemistry;2021-05-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3