The Newton’s Polynomial Based - Automatic Model Generation (AMG) for Sensor Calibration to Improve the Performance of the Low-Cost Ultrasonic Range Finder (HC-SR04)

Author:

Gandha Gutama Indra,Santoso Dewi Agustini

Abstract

The ultrasonic range finder sensors is a general-purpose sensor to measure the distance contactless. This sensor is categorized as a low-cost sensor that is widely used in various applications. This sensor has a significant deviation that leads to significant errors in the measurement result. The error produced by this sensor tends to increase proportionally to the measured distance. The implementation of a particular algorithm is required to reduce the error value. The model-based calibration is a solution to increase accuracy. The model-based solutions are no longer feasible if the states of the model have changed. The length of the usage of the sensor leads to sensor fatigue. Sensor fatigue is one of the causes of model state changes. If the drift is still within the tolerance limit, the sensor performance can still be restored using the calibration method. The model-based calibration calibrates the sensor by using the model. The update of the model must be made whenever the changing of the model state occurred. Since the manual model-making process is not an easy task, time, and cost required, then the Newton polynomial-based (Automatic Model Generation (AMG) has been implemented in this research. The AMG algorithm generates the new sensor model automatically based on the most updated states. This automatic model generation is implemented in the calibration process of the ultrasonic sensor. The implementation of a polynomial-based AMG algorithm for sensor calibration has been succeeded in improving the calibrated sensor’s accuracy by 96.4% and reducing the MSE level from 25.6 to 0.914

Publisher

LPPM Institut Teknologi Telkom Purwokerto

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3