Critical Review—Approaches for the Electrochemical Interrogation of DNA-Based Sensors: A Critical Review

Author:

Pellitero Miguel AllerORCID,Shaver AlexanderORCID,Arroyo-Currás NetzahualcóyotlORCID

Abstract

The desire to improve and decentralize diagnostic platforms to facilitate highly precise and personalized medicine has motivated the development of a large number of electrochemical sensing technologies. Such a development has been facilitated by electrochemistry's unparalleled ability to achieve highly specific molecular measurements in complex biological fluids, without the need for expensive instrumentation. However, for decades, progress in the field had been constrained to systems that depended on the chemical reactivity of the analyte, obstructing the generalizability of such platforms beyond redox- or enzymatically active clinical targets. Thus, the pursuit of alternative, more general strategies, coupled to the timely technological advances in DNA sequencing, led to the development of DNA-based electrochemical sensors. The analytical value of these arises from the structural customizability of DNA and its ability to bind analytes ranging from ions and small molecules to whole proteins and cells. This versatility extends to interrogation methods, as DNA-based sensors work through a variety of detection schemes that can be probed via many electroanalytical techniques. As a reference for those experienced in the field, and to guide the unexperienced scientist, here we review the specific advantages of the electroanalytical methods most commonly used for the interrogation of DNA-based sensors.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3