Cu-Sn Wafer Level Bonding for Vacuum Encapsulation of Microbolometer Focal Plane Arrays

Author:

Lapadatu Adriana,Simonsen Tor Ivar,Kittilsland Gjermund,Stark Birger,Hoivik Nils,Dalsrud Vegar,Salomonsen Guttorm

Abstract

Wafer level vacuum encapsulation for wafers with integrated and released sensitive microelectromechanical structures has been achieved by making use of Cu-Sn solid liquid interdiffusion bonding. By using a Sn layer as oxidation barrier for the Cu underneath, the bonding surface does not require pre-cleaning or use of any flux agent prior to, or during bonding. With a tailored temperature and pressure bonding profile, the amount of Sn squeeze-out is reduced. Cross sections through the bonded frames were used to investigate the formation of Cu-Sn intermetallic compounds. The strength of the joints was measured using a shear test, which resulted in an average value of 35MPa. Further temperature cycling of bonded dies does not result in any reduction in bonding yield or shear strength. The concentric interference fringes revealed by IR pictures of the bonded wafer pairs demonstrate that the cap on each device is deflected towards the bottom wafer, confirming that the pressure in the bonded cavities is low.

Publisher

The Electrochemical Society

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3