Highly Sensitive Measurement of Bioelectric Potentials by Boron-Doped Diamond Electrodes for Plant Monitoring

Author:

Ochiai Tsuyoshi,Tago Shoko,Hayashi Mio,Fujishima Akira

Abstract

A sensitive plant monitoring system for the detection of plant bioelectric potentials using boron-doped diamond (BDD) electrodes is presented. For sensor electrodes, commercially available BDD, Ag, Ag/AgCl, and Pt plate electrodes were used. This approach was tested on a hybrid species in the genus Opuntia (potted) and three different trees (ground-planted) in different locations in Japan. For the Opuntia, bioelectric potential changes were artificially induced by the surface potential using fingers. Substantial changes in bioelectric potentials were detected through all electrodes during finger touching on the potted Opuntia hybrid plant surfaces. However, the BDD electrodes were several times more sensitive to bioelectric potential changes compared to the other electrodes. For ground-planted trees, it was similarly found that both BDD and Pt electrodes detected bioelectric potential changes induced by altering environmental factors for multiple months. BDD electrodes were five to ten times more sensitive in this detection than Pt electrodes.

Publisher

The Electrochemical Society

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Analysis for Temperature Classification using Bioelectric Potential of Plant;2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE);2022-12-13

2. Dynamics of Bioelectric Potential in the Root Zone of Plants during Irrigation;Eurasian Soil Science;2021-03

3. Noninvasive Measurement of Bioelectric Potentials of Plants;Technical Physics Letters;2019-03

4. Flexible Boron-Doped Diamond (BDD) Electrodes for Plant Monitoring;Sensors;2017-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3