Low-Power SiGe HBT and Circuit Technology for Future Quasi-Millimeter-Wave Wireless Communications

Author:

Washio Katsuyoshi,Shiramizu Nobuhiro,Miura Makoto,Nakamura Takahiro,Oda Katsuya,Masuda Toru

Abstract

SiGe HBTs and their circuit technologies are suitable for future wireless communications. To achieve low 1/f-noise characteristics in RF applications, a SiGe HBT with a raised-emitter structure, fabricated by epitaxial growth of phosphorous-doped Si layers, was developed. Aimed at ultra-low power consumption in a wide range of microwave applications, a SiGe HBT fabricated by well-controlled SiGe/Si continuous epitaxial growth was developed. To improve the design process for Si-based RF-ICs, equivalent circuits for transmission lines under the slow-wave effect and for inductors under the peripheral ground effect were also demonstrated. Moreover, MMICs operating in the quasi-millimeter-wave region, namely, two 24-GHz LNAs, a 27-GHz VCO, and a 24-GHz mixer were developed. In regards to these MMICs, new circuit technologies, namely, inductive biasing, merged transformer matching, and pseudo-stacked configuration, were developed.

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3