Bimetallic Palladium-Base Metal Nanoparticle Oxygen Reduction Electrocatalysts

Author:

Wang Xiaoping,Kariuki Nancy,Niyogi Suhas,Smith Matt C.,Myers Deborah J.,Hofmann Timo,Zhang Yufeng,Bär Marcus,Heske Clemens

Abstract

Bimetallic palladium-base metal nanoparticle catalysts are being investigated as alternatives to platinum-based catalysts for the oxygen reduction reaction (ORR) in polymer electrolyte fuel cells. We report here our results on the palladium-copper, palladium-nickel, and palladium-iron systems. We are studying the effect of synthetic procedure, palladium to base metal ratio, heat treatment temperature, and heat treatment atmosphere on the ORR activity as well as on the valence band structure of these systems. Palladium-copper nanoparticle catalysts synthesized by the colloidal technique with a composition of 75 mol% copper are the most active investigated thus far. This catalyst shows an ORR activity which is approximately 75% that of platinum (per gram of platinum-group metal). The corresponding valence band structure is strongly modified compared to that of Pd and Cu alone and resembles that of Pt, which is believed to be the reason for its superior performance among the other investigated platinum-free alternatives.

Publisher

The Electrochemical Society

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3